

Journal of Organometallic Chemistry 658 (2002) 132-140

www.elsevier.com/locate/jorganchem

Carbon-fluorine bond activation of perfluorinated arenes with $Cp_2^*ZrH_2$

Bradley M. Kraft, William D. Jones*

Department of Chemistry, University of Rochester, Rochester, NY 14627, USA

Received 3 May 2002; received in revised form 10 June 2002; accepted 10 June 2002

Abstract

Reaction of $Cp_2^*ZrH_2$ (Cp*, pentamethylcyclopentadienyl) with excess hexafluorobenzene produces a mixture of Cp_2^*ZrHF , C_6F_5H and $Cp_2^*Zr(C_6F_5)H$ in ca. 2:1:1 ratio. Reaction of $Cp_2^*ZrH_2$ with excess C_6F_5H produces a mixture of Cp_2^*ZrHF , $Cp_2^*Zr(C_6F_5)H$, $Cp_2^*Zr(o-C_6F_4H)H$, $p-C_6F_4H_2$, and $o-C_6F_4H_2$ with preferred *ortho* aromatic C-F activation. Dual mechanisms are proposed for the formation of Ar^FH and $Cp_2^*Zr(Ar^F)H$ species. (© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Bond activation; Perfluorinated arenes; Pentamethylcyclopentadienyl

1. Introduction

The carbon-fluorine bond is the strongest and most unreactive bond found in organic molecules and its use as an active functional group is a significant chemical challenge. Some of the major goals in carbon-fluorine bond activation studies include the functionalization of saturated fluorocarbons and the conversions of chlorofluorocarbons (CFCs) into non-ozone-depleting substances [1]. Transition-metal complexes are one class of compounds that have been shown to cleave strong C-F bonds either stoichiometrically or catalytically [1]. In most examples of C-F activation reactions by transition metals, the reactions are thermodynamically driven by formation of a strong metal-fluorine bond, and this result generally precludes the use of the metal as a defluorination catalyst. The addition of a second reductant and/or fluoride acceptor, however, can sometimes regenerate the reactive metal complex, and allow the facile catalytic cleavage of C-F bonds [2].

Perfluorinated unsaturated compounds are generally more reactive than their less-fluorinated counterparts. This is due to the high electronegativity of fluorine, which imparts an increase in electrophilicity of the adjacent double bonds. The effect is prominently observed by comparison of the reactions of hexafluorobenzene and monofluorobenzene. Monofluorobenzene (without additional activating groups) is virtually inert toward nucleophiles [1]. Hexafluorobenzene has an estimated C-F bond dissociation energy of 154 kcal mol⁻¹ [3], the highest of the fluorobenzenes, yet it is significantly more reactive toward nucleophiles and electron-rich metal complexes.

In several cases, transition-metal hydride complexes have been shown to react with C₆F₆ to form pentafluorophenyl hydride complexes. For example, Cp*Rh(PMe₃)H₂ reacts to form Cp*Rh(PMe₃)(C₆F₅)H by a base-catalyzed process involving nucleophilic displacement of fluoride ion by the anion, $[Cp*Rh(PMe_3)H]^-$ [4]. Similarly, $Cp*Ir(PMe_3)(H)(Li)$ reacts with C_6F_6 to form LiF and $Cp*Ir(PMe_3)(C_6F_5)H$ [5]. In contrast, an electron transfer mechanism was proposed in the reaction of Ru(dmpe)₂H₂ with C₆F₆ to give trans-Ru(dmpe)₂(C₆F₅)H [6]. In other cases, metal complexes react with C_6F_6 to give pentafluorophenyl fluoride complexes. For example, $Ni(COD)_2$ (COD = 1,5-cyclooctadiene) reacts with C_6F_6 in the presence of PEt₃ or Ni(PEt₃)₄ to give trans-Ni(PEt₃)₂(C₆F₅)F [7]. [(dtbpm)Pt(neopentyl)H] (dtbpm = di(t-butyl)phosphinomethane) reacts thermally with C₆F₆ to give $(dtbpm)Pt(C_6F_5)F$ quantitatively [8]. Low temperature

0022-328X/02/\$ - see front matter \odot 2002 Elsevier Science B.V. All rights reserved. PII: S 0 0 2 2 - 3 2 8 X (0 2) 0 1 6 4 0 - 6

^{*} Corresponding author. Tel.: +1-716-275-5493; fax: +1-716-473-6889

E-mail address: jones@chem.chem.rochester.edu (W.D. Jones).

photolysis of $Cp*Rh(PMe_3)(\eta^2-C_6F_6)$ produced $Cp*Rh(PMe_3)(C_6F_5)F$ in low yield [9].

We have recently reported the reactions of $Cp_2^*ZrH_2$ with monofluorobenzene and 1-fluoronaphthalene to give Cp^{*}₂ZrHF and free arene [10]. Fluorobenzene reacts slowly over 40 days at 85 °C to give a mixture of Cp_2^*ZrHF , benzene, and $Cp_2^*Zr(C_6H_5)F$ in 1:1:0.75 ratio. Reaction of Cp₂^{*}ZrH₂ with 1-fluoronaphthalene, however, gives only Cp^{*}₂ZrHF and naphthalene within 4 days at 85 °C, according to Eq. (1). There was no evidence for free radicals in these reactions, as the rate of reaction with fluoronaphthalene was unaffected by added radical initiators or inhibitors, and otherwise followed clean bimolecular reaction kinetics. We, therefore, proposed a mechanism involving nucleophilic hydride attack on the ring and fluoride elimination involving a carbanionic intermediate-transition state. The decreased loss in resonance energy in the transition state was believed to be responsible for the increased reactivity of fluoronaphthalene in comparison with fluorobenzene. In the reaction of $Cp_2^*ZrH_2$ with fluorobenzene, the secondary product, $Cp_2^*Zr(C_6H_5)F$, was shown to form by an initial ortho aryl C-H activation, β -fluoride elimination to give a benzyne complex, and finally, insertion of benzyne into the Zr-H bond [10].

Recently reported from our laboratory is the reaction of $[Cp_2ZrH_2]_2$ with C_6F_6 to produce a mixture of $Cp_2Zr(C_6F_5)F$, C_6F_5H , and Cp_2ZrF_2 , according to Eq. (2) [11]. An oxidative addition to ' Cp_2Zr' ' was proposed to account for $Cp_2Zr(C_6F_5)F$. The *ansa*-derivative, $(Me_2Si(C_5H_4)_2ZrH_2)_2$, also reacts with C_6F_6 to give the apparent oxidative addition product, Me_2 - $Si(C_5H_4)_2Zr(C_6F_5)F$ [12].

Due to the low solubility of these zirconium hydride complexes, a thorough kinetic and mechanistic study was not possible, and, therefore, the soluble and monomeric $Cp_2^*ZrH_2$ was chosen as a suitable substrate to continue this investigation. Surprisingly, reaction of $Cp_2^*ZrH_2$ with C_6F_6 did not give the analogous pentafluorophenyl fluoride complex, but rather a pentafluorophenyl hydride complex as a major reaction product. The results of this study are presented in this paper.

2. Results and discussion

2.1. Reaction of $Cp_2^*ZrH_2$ with hexafluorobenzene

Reaction of $Cp_2^*ZrH_2$ with 20 equivalents of C_6F_6 in cyclohexane- d_{12} over ~6 h at 85 °C affords a clean mixture of Cp₂^{*}ZrHF, Cp₂^{*}Zr(C₆F₅)H, and C₆F₅H in 2:1:1 ratio, according to Scheme 1. These species grow in together, and no intermediates were detected. A small amount (< 5%) of Cp₂*ZrF₂ is also observed [13]. The ratio of C_6F_5H to $Cp_2^*Zr(C_6F_5)H$ remained unchanged under conditions employing one equivalent of C_6F_6 or neat C₆F₆ solvent. All products were characterized by ¹H and ¹⁹F-NMR spectroscopy and GC-MS, and independent synthesis of $Cp_2^*Zr(C_6F_5)H$ [14]. When the reaction of Cp22rH2 and excess C6F6 was performed in THF-d₈ solvent, many other unidentified C-F activated products along with Cp^{*}₂ZrHF, C₆F₅H, and $Cp_2^*Zr(C_6F_5)H$ were observed. In contrast to the reaction of C_6F_6 with $[Cp_2ZrH_2]_2$, the 'oxidative addition' product, $Cp_2^*Zr(C_6F_5)F$, was not detected under any conditions. $Cp_2^*Zr(C_6F_5)F$ was prepared independently by reaction of $Cp_2^*Zr(C_6F_5)H$ with 70/30 HF-pyridine in pentane. The X-ray structure of this compound is shown in Fig. 1. Although required for mass balance, H₂ was not observed in the ¹H-NMR spectrum in this reaction.

2.2. Reaction of $Cp_2^*ZrH_2$ with pentafluorobenzene

Reaction of Cp₂²ZrH₂ with 20 equivalents of C₆F₅H in cyclohexane- d_{12} over 6 h at 85 °C afforded a clean mixture of C–H and C–F activated products consisting of Cp₂²ZrHF, Cp₂²Zr(C₆F₅)H, Cp₂²Zr(o-C₆F₄H)H, o-C₆F₄H₂, p-C₆F₄H₂, and Cp₂^{*}ZrF₂, according to Scheme 1. Overall, ortho C–F activation was preferred to give o-C₆F₄H₂ and p-C₆F₄H₂ in 0.60:0.46 ratio [15]. No Cp₂^{*}Zr(p-C₆F₄H) was observed. The identity of Cp₂^{*}Zr(o-C₆F₄H)H was confirmed by independent synthesis [14], and o-C₆F₄H₂ and p-C₆F₄H₂ were verified by GC–MS and comparison with authentic samples.

2.3. Reaction of $Cp_2^*ZrH_2$ with perfluorotoluene, perfluoronaphthalene, and perfluorobiphenyl

Cp₂*ZrH₂ reacts with perfluorotoluene (one equivalent) in cyclohexane- d_{12} at room temperature over 3 days to give Cp₂*ZrHF and *p*-CF₃C₆F₄H in 1.3:1 ratio. Only small amounts of Cp₂*Zr(*p*-C₆F₄CF₃)H (~4%) and Cp₂*ZrF₂ (~4%) were observed (Scheme 1).

Reaction of perfluoronaphthalene (five equivalents) with $Cp_2^2ZrH_2$ at 85 °C over 1.5 h affords a mixture of $Cp_2^2Zr(C_{10}F_7)H$ [16], heptafluoronaphthalene, Cp_2^2ZrHF , and a small amount (< 10%) of $Cp_2^2ZrF_2$. Formation of free arene was favored in this case to

Scheme 1. Distribution of products in reactions of $Cp_2^*ZrH_2$ with fluorinated arenes. Percents given in parenthesis are based on total zirconium. Small amounts (1–10%) of $Cp_2^*ZrF_2$ are also formed in these reactions (not shown).

Fig. 1. ORTEP drawing of Cp₂^{*}Zr(C₆F₅)F showing the perfluoroaryl group lying in the wedge of the Cp₂^{*}Zr moiety (twist = 4.5°), thermal ellipsoids are shown at the 30% level; $d_{Zr-F(1)} = 1.95$ Å; $d_{Zr-C(1)} = 2.35$ Å; $d_{Zr-F(2)} = 3.47$ Å; \angle Cp^{*}-Zr-Cp^{*} = 139.6°.

produce heptafluoronaphthalene and $Cp_2^*Zr(C_{10}F_7)H$ in ~ 2.3:1 ratio (Scheme 1).

Reaction of perfluorobiphenyl (ten equivalents) with $Cp_2^*ZrH_2$ at 85 °C over 20 h affords a mixture of Cp_2^*ZrHF , $Cp_2^*Zr(p-C_6F_4-C_6F_5)H$, $p-C_6F_5-C_6F_4H$, and a small amount (< 10%) of $Cp_2^*ZrF_2$. For this substrate, free fluoroarene was favored to produce nonafluorobi-

phenyl and $Cp_2^*Zr(p-C_6F_4-C_6F_5)H$ in ~1.8:1 ratio (Scheme 1).

2.4. Reaction profile and kinetic studies

The reaction of Cp₂^{*}ZrH₂ with C₆F₆ was monitored by ¹⁹F-NMR spectroscopy over the course of the reaction at 85 °C [17]. As shown in Fig. 2, C₆F₅H and Cp₂^{*}Zr(C₆F₅)H are formed at approximately the same rate throughout the course of the reaction with concomitant formation of two equivalents of Cp₂^{*}ZrHF. It, therefore, appeared that C₆F₅H and Cp₂^{*}Zr(C₆F₅)H could be formed together from a common intermediate. The reactions of Cp₂^{*}ZrH₂ with perfluorotoluene, per-

Fig. 2. Reaction profile for reaction of $Cp_2^*ZrH_2$ (0.06 M) and C_6F_6 (1.2 M) at 85 °C in C_6D_{12} solvent; $\blacklozenge = Cp_2^*ZrHF$; $\blacktriangle = Cp_2^*Zr(C_6F_5)H$; $\Box = C_6F_5H$; $\blacksquare = Cp_2^*ZrF_2$.

fluoronaphthalene, and perfluorobiphenyl, however, give preferentially free arene and less $Cp_2^*Zr(Ar^F)H$, suggesting that dual mechanisms are involved in the formation of these two types of products rather than a mechanism that requires a 1:1 stoichiometry. In the reaction with C_6F_6 , the identical rates of formation of these two products could, therefore, be mere coincidence.

The reaction profile with C_6F_6 also implies that $Cp_2^*Zr(C_6F_5)H$ is not formed from a secondary reaction of $Cp_2^*ZrH_2$ with C_6F_5H . Additional support for this conclusion is seen in the loss of selectivity in the reaction of $Cp_2^*ZrH_2$ with C_6F_5H to give several doubly hydrodefluorinated aromatic products along with $Cp_2^*Zr(C_6F_5)H$ (Scheme 1). None of these $C_6F_4H_2$ products are observed in the reaction with C_6F_6 (vide supra).

Kinetic studies were performed to measure the concentration dependence and order of the rate of the reaction on $[C_6F_6]$. For a solution containing 0.055 M $Cp_2^*ZrH_2$ and excess C_6F_6 (0.55–2.20 M), plots of $\ln[Cp_2^*ZrH_2]$ versus time were linear (Fig. 3) and the pseudo-first order rate constants (k_{obs}) were obtained from the slopes (Table 1) [17]. The C_6F_6 concentration dependence is not quite first order, as doubling the concentration of C_6F_6 did not cause a doubling of the rate. The order with respect to $[C_6F_6]$ was determined by plotting a graph of $\ln k_{obs}$ versus $\ln[C_6F_6]$, where $k_{obs} = k \cdot [C_6F_6]^n$ (Fig. 4). The slope of the line, n, equals the kinetic order, and was calculated to be ~ 0.7, giving the overall rate equation, rate = $k[Cp_2^*ZrH_2][C_6F_6]^{0.7}$.

The apparent first order dependence of the rate on $[Cp_2^2ZrH_2]$ was verified. For solutions containing 1.24 M C₆F₆, three separate reactions were run with different Cp_2^2ZrH_2 concentrations (0.031–0.126 M). First-order plots of ln[Cp_2^2ZrH_2] versus time are linear (Fig. 5), and give observed rate constants of 0.011±0.002 min⁻¹ [17].

The results of the kinetic studies are almost but not exactly consistent with a bimolecular reaction between $Cp_2^*ZrH_2$ and C_6F_6 . It is quite possible that the true order in $[C_6F_6]$ is 1.0, and that the apparent deviation from unity is due to the fact that the nature of the solvent changes considerably as C_6F_6 concentration

Fig. 3. Graph of $\ln[Cp_2^*ZrH_2]$ vs. time for 0.055 M $Cp_2^*ZrH_2$ and $\blacklozenge = 0.55$ M C_6F_6 ; $\blacksquare = 1.10$ M C_6F_6 ; $\blacktriangle = 2.20$ M C_6F_6 in C_6D_{12} at 85 °C.

Table 1

Pseudo-first order rate constants for the reaction of $Cp_2^*ZrH_2$ (0.055 M) with excess C_6F_6 at 85 $\,^\circ C$

$[C_6F_6](M)$	$k_{\rm obs} ({\rm s}^{-1})$	
0.55	$9.5(4) \times 10^{-5}$	
1.10	$1.5(1) \times 10^{-4}$	
2.20	$2.4(1) \times 10^{-4}$	

Errors are shown as standard deviations (S.D.).

Fig. 4. Graph of $\ln k_{obs}$ vs. $\ln[C_6F_6]$ for reactions in C_6D_{12} at 85 °C.

Fig. 5. Graph of $\ln[Cp_2^*ZrH_2]$ vs. time for 1.24 M C_6F_6 and $\blacksquare = 0.031$ M; $\blacktriangle = 0.063$ M; $\blacklozenge = 0.126$ M $Cp_2^*ZrH_2$ in C_6D_{12} at 85 °C.

increases (2.20 M = 25% C₆F₆ by volume). It is possible that the activity of C₆F₆ does not double as its concentration is doubled, giving rise to the fractional order in [C₆F₆].

The reaction of $Cp_2^*ZrH_2$ with C_6F_6 was performed in the presence of radical traps, 9,10-dihydroanthracene and triphenylmethane to test for the possibility of a radical chain mechanism. In all cases, no decrease in rate was observed (Fig. 6), no change in the ratios of the products was observed, and no other products were detected [17]. Also, no decrease in rate was observed when the reaction was performed in cumene solvent. These observations suggest that free Ar^{F•} radicals are not involved in this chemistry. When the reaction was performed in the presence of sodium and naphthalene (a radical initiator), no increase in rate was observed. Addition of a small amount of 1-fluorohexane to the reaction mixture was also ineffective for initiation of the reaction [10]. Finally, addition of H₂ (1.3 atm) to the reaction mixture had no effect on the rate.

Fig. 6. Graph of $[Cp_2^*ZrH_2]$ vs. time for 0.037 M $Cp_2^*ZrH_2$ and 0.73 M C_6F_6 in C_6D_{12} at 85 °C in the presence of radical inhibitors and sodium naphthalene. $\blacklozenge = C_6F_6$ only; $\blacktriangle = 0.19$ M triphenylmethane; $\blacksquare = 0.19$ M 9,10-dihydroanthracene; $\blacksquare = 5$ mol% sodium and naphthalene.

2.5. Mechanism of C_6F_5H formation

A possible mechanism to explain the formation of C_6F_5H in the reaction with C_6F_6 involves nucleophilic hydridic attack on the arene followed by fluoride elimination to form Cp_2^*ZrHF (Fig. 7). This S_NAr2 pathway is supported by the known hydridic nature of $Cp_2^*ZrH_2$ [18] and the reactivity of C_6F_6 toward nucleophilic attack [1]. This pathway is also supported by the observation of increased reactivity with perfluoronaphthalene in comparison with C_6F_6 . As in the reactions of $Cp_2^*ZrH_2$ with monofluorobenzene and monofluoronaphthalene [10], the decreased loss in resonance energy in the carbanionic intermediate-transition state may account for the increased reactivity for the fused-ring system. Similarly, the reaction of $Cp_2^*ZrH_2$ and C_6F_5H to give $o-C_6F_4H_2$ and $p-C_6F_4H_2$ could also occur by the hydridic attack mechanism.

Several other mechanisms for the formation of C_6F_5H were discounted. First, a radical chain mechanism is inconsistent with the observation that there is no effect on the rate or distribution of products by radical inhibitors or initiators. Second, the reaction of $Cp_2^2Zr(C_6F_5)F$ or $Cp_2^2Zr(C_6F_5)H$ with H_2 does not occur to give C_6F_5H under the same reaction conditions. Third, the possibility of a $[Cp_2^2Zr^{II}]$ intermediate in the formation of C_6F_5H is also unlikely as no reaction was observed with $[Cp_2^2Zr]_2(N_2)_3$ and C_6F_6 at room temperature. Heating this mixture to 85 °C did not give C– F activated products, but rather formed $Cp_2^2ZrH_2$ and other unidentified species by an undetermined mechanism.

Fig. 7. Possible intermediate-transition state leading to formation of C_6F_5H and Cp_2^*ZrHF .

2.6. Mechanism of $Cp_2^*Zr(C_6F_5)H$ formation

Several mechanisms for the formation of Cp₂²Zr(C₆F₅)H can be immediately ruled out. First, conproportionation of Cp₂^{*}Zr(C₆F₅)F and Cp₂^{*}ZrH₂ at 85 °C did not produce Cp₂^{*}Zr(C₆F₅)H. Second, a radical mechanism is unlikely as no effect was observed by the radical inhibitors or initiators. Third, a 'meta-thesis' of Cp₂^{*}ZrH₂ and C₆F₆ to form Zr-Aryl^F and H– F bonds via a 4-centered transition state is unlikely as the polarizations of the bonds, $^{\delta+}$ Zr-H^{$\delta-$} and $^{\delta+}$ C-F^{$\delta-$}, are incompatible.

One mechanism which could lead to formation of $Cp_2^*Zr(C_6F_5)H$ involves an initial reversible metal-toring hydride transfer to form the Zr^{II} intermediate, $Cp^*(C_5Me_5H)ZrH$ (Eq. (3)). This Zr^{II} intermediate could quickly undergo nucleophilic attack on C_6F_6 to displace fluoride ion and form the Zr- $Aryl^F$ bond. The fluoride ion could then deprotonate the diene ligand to form $Cp_2^*Zr(C_6F_5)H$ and HF. HF would quickly react with $Cp_2^*ZrH_2$ to give Cp_2^*ZrHF and H_2 . This mechanism accounts for the observed products, although it is not clear why a C-F activation reaction with $[Cp_2^*Zr]_2(N_2)_3$ is not observed if a Zr^{II} intermediate is involved (vide supra).

It is known that all of the Cp*-methyl protons of $Cp_2^*ZrH_2$ are exchanged in the presence of H_2 [18]. The proposed mechanism for this exchange involves a metalto-ring hydride transfer to form the Zr^{II} intermediate. Cp*(C5Me5H)ZrH, as proposed in the mechanism above. It might be expected, however, that HF would not react selectively with Cp2ZrH2 to form Cp2ZrHF, as formation of some $Cp_2^*Zr(C_6F_5)F$ might be expected by reaction of HF with $Cp_2^*Zr(C_6F_5)H$. In an independent experiment, a limiting amount of 0.12 M HF (70:30 w/w HF:pyridine) in pentane was added to a dilute solution of $Cp_2^*ZrH_2$ (0.002 M) and $Cp_2^*Zr(C_6F_5)H$ (0.002 M) in pentane in a polyethylene reaction vessel. A mixture of products including $Cp_2^*Zr(C_6F_5)F$, Cp₂^{*}ZrHF, Cp₂^{*}ZrF₂, and small amounts of other unidentified species were observed, suggesting that HF does not react selectively with Cp^{*}₂ZrH₂. This distribution of products, however, may be due to the fact that HF-pyridine is different than free HF, and it was found in an independent experiment that pyridine itself reacts with Cp^{*}₂ZrH₂ to give unidentified products. High local concentrations of HF are also undoubtedly present during the addition of HF-pyridine to the independently prepared mixture of $Cp_2^*ZrH_2$ and $Cp_2^*Zr(C_6F_5)H$, and this might also account for the loss in selectivity that might otherwise be observed.

alternative mechanism which leads An to $Cp_2^*Zr(C_6F_5)H$ is homolytic C-F cleavage of C_6F_6 by a 'hydrogen-depleted' dimer, such as the Zr^{III} diradical, $[Cp_2^*Zr]_2(H)(\mu-H)$ or $[Cp_2^*Zr(\mu-H)]_2$ (Fig. 8). This mechanism would also account for the inability to trap free C₆F₅• radicals. The involvement of a dimeric species has been proposed in the reaction of $[Cp_2ZrH_2]_2$ with diphenylacetylene, primarily because the dominant form of the Cp analog is the dimer [19]. The dimeric form of Cp₂^{*}ZrH₂, however, has not been observed. It might be possible that loss of H_2 from the dimer is induced by C₆F₆ in a fast termolecular step prior to homolysis of the C-F bond, although the kinetic studies appear inconsistent with this proposal.

Other zirconocene complexes, $(C_5Me_4H)_2ZrH_2$ [20] and Me₂Si(C₅Me₄)₂ZrH₂ [21], which exist as a monomer-dimer equilibrium in solution at room temperature were examined to broaden the scope of this reaction and to test the possibility of a reactive dimeric intermediate. Both of these complexes reacted with C₆F₆ under more mild conditions to give analogous products. Specifically, reaction of (C₅Me₄H)₂ZrH₂ with C₆F₆ (20 equivalents) at room temperature afforded (C₅Me₄H)₂Zr(C₆F₅)H, C₆F₅H, (C₅Me₄H)₂ZrF₂ in 1:1.1:0.6:3.1:0.3 ratio. Reaction of (C₅Me₄H)₂ZrH₂ with C₆F₅H (ten equivalents) produced (C₅Me₄H)₂ZrHF, (C₅Me₄H)₂Zr(*o*-C₆F₄H)H in ~ 1.4:2.6 ratio and ~ 10% (C₅Me₄H)₂Zr(C₆F₅)H.

The reaction of $Me_2Si(C_5Me_4)_2ZrH_2$ with C_6F_6 (ten equivalents) also occurred at room temperature to afford $Me_2Si(C_5Me_4)_2ZrHF$, $Me_2Si(C_5Me_4)_2Zr-(C_6F_5)H$, and $Me_2Si(C_5Me_4)_2Zr(o-C_6F_4H)H$ in 4.5:1.8:1 ratio along with H₂ and a small amount (< 10%) of other unidentified species. Only traces of C_6F_5H could be detected in this reaction. Although an increase in the rate of reaction of $(C_5Me_4H)_2ZrH_2$ and $Me_2Si(C_5Me_4)_2ZrH_2$ with C_6F_6 might suggest the involvement of a dimeric species, the increased electrophilicity of both of these substrates in comparison with $Cp_2^*ZrH_2$ might also explain the increased reactivity.

Fig. 8. Possible transition state leading to formation of Cp_2^*ZrHF and $Cp_2^*Zr(Ar^F)H.$

3. Conclusion

Reaction of $Cp_2^*ZrH_2$ with hexafluorobenzene produces a mixture of Cp_2^*ZrHF , C_6F_5H , and $Cp_2^*Zr(C_6F_5)H$ by dual mechanisms. Radical initiators and inhibitors had no effect on the rate of reaction or distribution of products. A nucleophilic hydride attack on C₆F₆ followed by fluoride elimination is proposed to explain the formation of C₆F₅H and one equivalent of Cp_2^*ZrHF . The formation of $Cp_2^*Zr(C_6F_5)H$ and the second equivalent of Cp^{*}₂ZrHF is difficult to explain. A metal-to-ring hydride transfer followed by attack on the Aryl^F ring by the zirconium nucleophile would generate a zwitterionic intermediate. Elimination of fluoride ion and subsequent deprotonation of the diene ligand produces $Cp_2^*Zr(C_6F_5)H$ and HF. HF could then react with an additional equivalent of Cp₂^{*}ZrH₂ to give Cp₂*ZrHF and H₂. An alternative mechanism proposed for formation of Cp₂*Zr(C₆F₅)H involves homolytic cleavage of a C-F bond of C_6F_6 by a hydrogen-depleted dimer such as (Cp₂^{*}ZrH)₂.

4. Experimental

All manipulations were performed inside an N₂-filled Vacuum Atmospheres glovebox or on a high vacuum line. Cyclohexane and cyclohexane- d_{12} were dried and vacuum distilled from purple solutions of benzophenone ketyl. UHP grade H_2 (air products) was purified by passage over activated 4 Å molecular sieves and MnO on vermiculite. Hexafluorobenzene, pentafluorobenzene, perfluorotoluene, perfluoronaphthalene, and perfluorobiphenyl were purchased from Aldrich and used as received. ¹H and ¹⁹F-NMR spectra were recorded using a Bruker Avance400 spectrometer. ¹⁹F-NMR spectra were referenced to α, α, α -trifluorotoluene (taken as δ -63.73 relative to CFCl₃ with down-field chemical shifts taken to be positive). GC-MS analyses were conducted using a 5890A Series GC equipped with a Restek RTX-5 column (0.25 mm ID, 0.25 µm, 13 m) and a HP 5970 series mass selective detector. Cp₂^{*}ZrH₂ [22], $Me_2Si(C_5Me_4)_2ZrH_2$ [21], and $(C_5Me_4H)_2ZrH_2$ [20] were prepared according to the literature procedures.

4.1. Reaction of hexafluorobenzene with $Cp_2^*ZrH_2$

A sealable NMR tube was charged with 14 mg (0.038 mmol) of Cp₂*ZrH₂ and dissolved in cyclohexane- d_{12} . Hexafluorobenzene (89 µl, 0.77 mmol, d = 1.61) was added via syringe. On the vacuum line, the solution was freeze-pump-thaw-degassed three times and sealed under vacuum. The tube was heated at 85 °C for 8 h upon which all Cp₂*ZrH₂ had reacted. The reaction mixture consisted of a 2:1:1 mixture of Cp₂*ZrHF, Cp₂*Zr(C₆F₅)H, and C₆F₅H. No H₂ was observed in

the ¹H-NMR spectrum. For Cp₂^{*}ZrHF: ¹H-NMR (C₆D₁₂): δ 1.92 (s, 30H, Cp^{*}), 6.23 (s, 1H, ZrHF). ¹⁹F-NMR (C₆D₁₂): δ 77.67 (s, 1F). For Cp₂^{*}Zr(C₆F₅)H: ¹H-NMR (C₆D₁₂): δ 1.88 (s, 30H, Cp^{*}), 7.71 (dd, 1H, Zr(C₆F₅)H). ¹⁹F-NMR (C₆D₁₂): δ -116.3 (m, 1F), -117.7 (m, 1F), -155.2 (t, 1F), -160.2 (m, 1F), -161.9 (m, 1F). For C₆F₅H: ¹H-NMR (C₆D₁₂): δ 6.74 (m, 1H). ¹⁹F-NMR (C₆D₁₂): δ -140.3 (m, 2F), -155.3 (t, 1F), -163.8 (m, 2F).

4.2. Reaction of pentafluorobenzene with $Cp_2^*ZrH_2$

In a reseatable NMR tube, 15 mg (0.041 mmol) $Cp_2^*ZrH_2$ was dissolved in cyclohexane- d_{12} followed by addition of 90 μ l (0.81 mmol, d = 1.514) of pentafluorobenzene. Hydrogen (1.3 atm) was placed over the reaction mixture and the sample was heated at 85 °C for 6 h. A mixture of Cp₂^{*}ZrHF, Cp₂^{*}Zr(o-C₆F₄H)H, $Cp_2^*Zr(C_6F_5)H$, $o-C_6F_4H_2$, $p-C_6F_4H_2$, and $Cp_2^*ZrF_2$ formed in 3:2:1:0.6:0.46:0.2 ratio. For Cp2Zr(o- $C_6F_4H)H$, ¹H-NMR (C_6D_{12}): δ 1.847 (s, 30H, Cp*), 5.98 (m, 1H, $Zr-C_6F_4H$), 6.83 (br, 1H, ZrH). ¹⁹F-NMR $(C_6D_{12}): \delta -118.1 \text{ (m, 1F)}, -139.8 \text{ (m, 1F)}, -157.4 \text{$ 1F), -159.0 (m, 1F). For $o-C_6F_4H_2$, ¹H-NMR (C₆D₁₂): δ 6.88 (m). ¹⁹F-NMR (C₆D₁₂): δ –139.0 (m, 2F), -155.5 (m, 2F). For *p*-C₆F₄H₂: ¹H-NMR (C₆D₁₂): δ6.89 (m). ¹⁹F-NMR (C₆D₁₂): δ -138.7 (m). The ¹H and ¹⁹F-NMR resonances of o-C₆F₄H₂, and p-C₆F₄H₂ were verified by comparison with authentic samples.

4.3. Reaction of perfluorotoluene with $Cp_2^*ZrH_2$

In a resealable NMR tube, 10 mg (0.027 mmol) $Cp_2^*ZrH_2$ was dissolved in cyclohexane- d_{12} followed by addition of 3.90 μ l (0.027 mmol, d = 1.666) of perfluorotoluene. The reaction mixture was allowed to stand at room temperature (r.t.) for 3 days consuming all $Cp_{2}^{*}ZrH_{2}$. Cp₂^{*}ZrHF, p-CF₃C₆F₄H, $Cp_2^*Zr(p C_6F_4CF_3$)H, $Cp_2^*ZrF_2$ were observed in 14:11:1:1 ratio. For p-CF₃C₆F₄H, ¹H-NMR (C₆D₁₂): δ 7.09 (m, 1H). ¹⁹F-NMR (C₆D₁₂): δ –56.77 (m, 3F), –136.3 (m, 2F), -139.6 (m, 2F). GC-MS (m/z): 218 [M⁺]. For $Cp_2^*Zr(p-C_6F_4CF_3)H$: ¹H-NMR (C₆D₁₂): δ 1.88 (s, 30H), 7.55 (dd, 1H). ¹⁹F-NMR (C_6D_{12}): δ -56.3 (m, 3F), -118.6 (m, 1F), -117.4 (m, 1F), -140.8 (m, 1F), -143.23 (m, 1F).

4.4. Reaction of perfluoronaphthalene with $Cp_2^*ZrH_2$

In a resealable NMR tube, 12 mg (0.033 mmol) of $Cp_2^*ZrH_2$ and 45 mg (0.16 mmol) of perfluoronaphthalene were dissolved in cyclohexane- d_{12} . The tube was heated in a thermostatted 85 °C oil bath for 1.5 h forming Cp_2^*ZrHF , heptafluoronaphthalene, and $Cp_2^*Zr(C_{10}F_7)H$ [16]. For $Cp_2^*Zr(C_{10}F_7)H$ (two rotomers or isomers), ¹H-NMR (C_6D_{12}): δ 7.75 (dd, Cp₂²Zr(C₁₀F₇)*H*), 7.59 (dd, Cp₂^{*}Zr(C₁₀F₇)*H'*). The Cp^{*} methyl resonances were overlapping due to the presence of excess perfluoronaphthalene. ¹⁹F-NMR (C₆D₁₂): δ –100.2 (dm, Zr-o-Ar^F), –112.2 (dm, Zr-o-Ar^F). Other ¹⁹F resonances of could not be assigned unambiguously. For 2-H-heptafluoronaphthalene, ¹H-NMR (C₆D₁₂): δ 7.01 (m, C₁₀F₇H). ¹⁹F-NMR: δ –116.2 (dm, 1F), –134.1 (m, 1F), –144.3 (dt, 1F), –146.1 (dt, 1F), –149.3 (dtd, 1F), –153.6 (t, 1F), –156.5 (m, 1F). MS: 254 ([M⁺], C₁₀F₇H). The chemical shifts for 2-H-heptafluoronaphthalene match those previously reported [23].

4.5. Reaction of perfluorobiphenyl with $Cp_2^*ZrH_2$

In a resealable NMR tube, 10 mg (0.027 mmol) of Cp₂^{*}ZrH₂ and 92 mg (0.27 mmol) of perfluorobiphenyl were dissolved in cyclohexane- d_{12} . The tube was heated in a thermostatted 85 °C oil bath for 20 h forming Cp₂^{*}ZrHF, *p*-C₆F₅-C₆F₄H, Cp₂^{*}Zr(C₆F₄-C₆F₅)H, and Cp₂^{*}ZrF₂. For Cp₂^{*}Zr(C₆F₄-C₆F₅)H: ¹H-NMR (C₆D₁₂): δ 7.75 (dd, Cp₂^{*}Zr(C₁₂F₉)*H*), 1.91 (s, Cp^{*}). The Cp^{*} methyl resonances were overlapping due to the presence of excess perfluorobiphenyl. ¹⁹F-NMR (C₆D₁₂): δ -118.2 (m, 1F, Zr-*o*-Ar^F), -118.8 (m, 1F, Zr-*o*-Ar^F), -140.3 (m, 2F), -161.3 (2F, obscured). For *p*-C₆F₅-C₆F₄H: ¹H-NMR: (C₆D₁₂): δ 7.09 (m). ¹⁹F-NMR: δ -137.9 (m, 2F), -138.7 (m, 2F), -138.8 (m, 2F), -151.5 (t, 1F), -161.6 (m, 2F), MS: 316 [M⁺].

4.6. Kinetics for reaction of $Cp_2^*ZrH_2$ with C_6F_6

For $[C_6F_6]$ dependence: In the drybox, 240 µl of a 0.137 M stock cyclohexane- d_{12} solution of Cp₂*ZrH₂ containing 0.023 M α, α, α -trifluorotoluene standard was syringed into resealable NMR tubes. Hexafluorobenzene (38, 76, or 152 µl) was added with a microliter syringe and the total volume was brought to 0.600 ml. The tubes were heated side-by-side in a thermostatted 85 °C oil bath and analyzed periodically by ¹⁹F-NMR spectroscopy. For [Cp^{*}₂ZrH₂] dependence: Into resealable NMR tubes, 150, 300, and 600 µl of a 0.147 M stock cyclohexane- d_{12} solution of Cp₂^{*}ZrH₂ containing 0.025 M α, α, α -trifluorotoluene standard was added with a syringe. Hexafluorobenzene (100 µl, 0.87 mmol) was added with a microliter syringe and the total volume was brought to 0.700 ml. The tubes were heated side-by-side in a thermostatted 85 °C oil bath and analyzed periodically by ¹⁹F-NMR spectroscopy.

4.7. Reaction of $Cp_2^*ZrH_2$ and $Cp_2^*Zr(C_6F_5)H$ with HF-pyridine

Into a polyethylene reaction vessel, 15 mg $Cp_2^*ZrH_2$ (0.041 mmol) and 22 mg $Cp_2^*Zr(C_6F_5)H$ (0.041 mmol) were added and dissolved in 25 ml of pentane. A 0.12 M solution of HF was prepared by adding 0.085 g of 70:30 HF-pyridine solution to 24 ml of pentane in another polyethylene vessel. To the solution of zirconium complexes, 0.33 ml of the dilute HF-pyridine solution was added at r.t. with stirring. The pentane was removed under vacuum and the residue was analyzed by NMR spectroscopy in C_6D_{12} . A mixture of $Cp_2^*Zr(C_6F_5)F$, Cp_2^*ZrHF , $Cp_2^*ZrF_2$, and other species were detected.

4.8. Preparation of $Cp_2^*Zr(C_6F_5)F$

In a polyethylene vial, 60 mg Cp₂^{*}Zr(C₆F₅)H was dissolved in 0.5 ml pentane and four drops of 70:30 HF– pyridine was added with stirring. Evolution of H₂ was observed and the solution became colorless. The solution was transferred to a glass vial to neutralize excess HF and the volatiles were removed in vacuo. Pentane was added, and the solution was filtered through a glass fiber filter. Concentration and cooling to -30 °C gave white crystals (40 mg, 64%). ¹H-NMR (C₆D₁₂): δ 1.806 (s, Cp^{*}). ¹⁹F-NMR (C₆D₁₂): δ 113.5 (d, J = 44 Hz, 1F, Zr-F), -111.6 (m, 1F), -111.1 (m, 1F), -155.3 (t, 1F), -160.1 (m, 1F), -162.5 (m, 1F). Anal. Calc. for C₂₆H₃₀F₆Zr: C, 57.01; H, 5.52. Found: C, 56.74; H, 5.39%.

4.9. Reaction of $(C_5Me_4H)_2ZrH_2$ with C_6F_6

A resealable NMR tube was charged with 10 mg (0.030 mmol) of (C₅Me₄H)₂ZrH₂ and dissolved in cyclohexane- d_{12} . Hexafluorobenzene (69 µl, 0.60 mmol, d = 1.61) was added via syringe and the tube was allowed to stand at r.t. for 2 days. The reaction mixture consisted of a mixture of $(C_5Me_4H)_2Zr(C_6F_5)H$, C_6F_5H , $(C_5Me_4H)_2Zr(o-C_6F_4H)H$, $(C_5Me_4H)_2ZrHF$ and $(C_5Me_4H)_2ZrF_2$ in 1:1.1:0.6:3.1:0.3 For ratio. $(C_5Me_4H)_2ZrHF$: ¹H-NMR (C_6D_{12}) : δ 6.04 (s, 1H, ZrHF), 5.17 (s, 2H, C₅Me₄H), 2.11 (s, 6H), 1.99 (s, 6H), 1.96 (s, 6H), 1.81 (s, 6H). ¹⁹F-NMR: δ 72.6 (s). For $(C_5Me_4H)_2Zr(C_6F_5)H$: ¹H-NMR (C_6D_{12}) : δ 7.40 (dd, 1H, ZrH(C₆F₅), 5.25 (s, 2H, C₅Me₄H), 2.06 (s, 6H), 1.99 (s, 6H), 1.91 (s, 6H), 1.77 (s, 6H). ¹⁹F-NMR: δ -118.0 (d, 1F), -120.3 (m, 1F), -155.9 (t, 1F), -161.2 (m, 1F), -162.4 (m, 1F). For $(C_5Me_4H)_2Zr(o C_6F_4H$)H: ¹H-NMR (C_6D_{12}): δ 6.63 (s, 1H, ZrH), $6.04 \text{ (m, 1H, Ar}^{F}H), 5.31 \text{ (s, 2H, C}_{5}Me_{4}H), 2.00 \text{ (s, 6H)},$ 1.97 (s, 6H), 1.91 (s, 6H), 1.65 (s, 6H). ¹⁹F-NMR: δ -118.7 (m, 1F), -140.4 (t, 1F), -157.7 (m, 1F), -159.3 (m, 1F).

4.10. Reaction of $Me_2Si(C_5Me_4)_2ZrH_2$ with C_6F_6

A resealable NMR tube was charged with 5 mg (0.013 mmol) of Me₂Si(C₅Me₄)₂ZrH₂ and suspended in cyclohexane- d_{12} . Hexafluorobenzene (14.7 µl, 0.13 mmol, d =

1.61) was added via syringe and the tube was stirred at r.t. for 18 h. The reaction mixture consisted of a mixture $Me_2Si(C_5Me_4)_2ZrHF$, $Me_2Si(C_5Me_4)_2Zr(C_6F_5)H$, and Me₂Si(C₅Me₄)Zr(o-C₆F₄H)H in 4.5:1.8:1 ratio. A small amount of Me₂Si(C₅Me₄)₂ZrF₂ and other unidentified species were also detected. A total of eight Cpmethyl resonances were observed in the ¹H-NMR spectrum, but could not be assigned. For Me₂Si(C₅-Me₄)₂ZrHF: ¹H-NMR (C₆D₁₂): δ 5.53 (s, 1H, ZrH), 0.72 (s, 6H, Me_2 Si). ¹⁹F-NMR: δ 75.6 (s). For Me₂-Si(C₅Me₄)₂Zr(C₆F₅)H: ¹H-NMR (C₆D₁₂): δ 6.61 (dd, 1H, ZrH), 0.82 (s, 6H, Me₂Si). ¹⁹F-NMR: δ -119.2 (m, 1F), -121.1 (m, 1F), -155.1 (t, 1F), -160.8 (m, 1F), -161.7 (m, 1F). For Me₂Si(C₅Me₄)Zr(o-C₆F₄H)H: ¹H-NMR (C₆D₁₂): δ 6.14 (tm, 1H, Ar^FH), 6.03 (s, 1H, Zr*H*), 0.77 (s, 6H, Me_2 Si). ¹⁹F-NMR: δ -118.8 (m, 1F), -139.7 (m, 1F), -156.6 (m, 1F), -158.2 (m, 1F).

4.11. Reaction of $(Me_2Si(C_5H_4)_2ZrH_2)_2$ with C_6F_6

A resealable NMR tube was charged with 12 mg (0.043 mmol) of $(Me_2Si(C_5H_4)_2ZrH_2)_2$ and suspended in THF- d_8 . Hexafluorobenzene (119 µl, 1.03 mmol, d = 1.61) was added via syringe and the tube was heated at 85 °C for 10 min upon which the solution evolved H₂ and became homogeneous. The reaction mixture consisted of Me₂Si(C₅H₄)₂Zr(C₆F₅)F, C₆F₅H, and Me₂Si(C₅H₄)₂ZrF₂ in 3.5:1:1 ratio by NMR integration. For Me₂Si(C₅H₄)₂Zr(C₆F₅)F: ¹H-NMR (THF- d_8): δ 0.91 (s, 3H, Me_2 Si), 0.78 (s, 3H, Me_2 Si), 5.78 (m, 2H), 6.40 (m, 2H), 6.45 (m, 2H), 6.99 (m, 2H). ¹⁹F-NMR (THF- d_8): δ 99.3 (brs, 1F), -114.4 (m, 2F), -158.8 (t, 1F), -164.2 (m, 2F). For Me₂Si(C₅H₄)₂ZrF₂: ¹H-NMR (THF- d_8): δ 0.82 (s, 6H, Me_2 Si), 6.05 (m, 4H), 6.55 (m, 4H). ¹⁹F-NMR: δ 30.4 (brs, 2F).

4.12. X-ray structural determination of $Cp_2^*Zr(C_6F_5)F$

A Siemens SMART CCD area detector diffractometer equipped with an LT-2 low temperature unit was used for X-ray crystal structure determination. A single crystal of $Cp_2^*Zr(C_6F_5)F$ was mounted under Paratone-8277 on a glass fiber and immediately placed in a cold nitrogen stream at -80 °C on the X-ray diffractometer. The X-ray intensity data were collected on a standard Siemens SMART CCD Area Detector System equipped with a normal focus molybdenumtarget X-ray tube operated at 2.0 kW (50 kV, 40 mA). A total of 1321 frames of data (1.3 hemispheres) were collected using a narrow frame method with scan widths of 0.3° in ω and exposure times of 30 s per frame using a detector-to-crystal distance of 5.09 cm (maximum 2θ angle of 56.54°) for both of the crystals. The unit cell parameters were based upon the least-squares refinement of three dimensional centroids of > 5000 reflections. Data were corrected for absorption using the

Table 2 Crystal data and structure refinement for $Cp_2^*Zr(C_6F_5)F$

sad/jonbk17
$C_{26}H_{30}F_6Zr$
547.72
193(2)
0.71073
Orthorhombic
Pbca
15.3752(6)
15.6533(6)
20.0858(8)
90
90
90
4834.1(3)
8
1.505
0.512
2240
0.04 imes 0.14 imes 0.26
2.03-23.27
$-17 \le h \le 13, \ -17 \le k \le 12,$
$-21 \le l \le 22$
21 054
$3470 \ [R_{\rm int} = 0.0634]$
SADABS
0.928000, 0.799125
Full-matrix least-squares on F^2
3470/0/298
0.810
$R_1 = 0.0469, wR_2 = 0.1109$
$R_1 = 0.0786, wR_2 = 0.1298$
0.359 and -0.269

program SADABS. The space group assignment was made on the basis of systematic absences and intensity statistics by using the XPREP program (Siemens, SHELXTL 5.04). The structure was solved by using direct methods and refined by full-matrix least-squares on F^2 . The non-hydrogen atoms were refined with anisotropic thermal parameters and hydrogens were included in idealized positions giving data:parameter ratios greater than 10:1. Table 2 contains crystallographic data.

5. Supporting information

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Center, CCDC no. 184938 for the compound $Cp_2^*Zr(C_6F_5)F$. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336033; or e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We gratefully thank the US Department of Energy (Grant FG02-86ER13569) for their support of this work.

References

 (a) There are several recent reviews on C-F activation by metal reagents: J.L. Kiplinger, T.G. Richmond, C.E. Osterberg, Chem. Rev. 94 (1994) 373;

(b) J. Burdeiuc, B. Jedlicka, R.H. Crabtree, Chem. Ber./Recl. 130 (1997) 145;

(c) T.G. Richmond, In: S. Murai (Ed.) Topics in Organometallic Chemistry, vol. 3, Springer-Verlag, New York, 1999, p. 243.

[2] (a) J.L. Kiplinger, T.G. Richmond, J. Am. Chem. Soc. 118 (1996) 1805;

(b) J. Burdeniuc, R.H. Crabtree, J. Am. Chem. Soc. 118 (1996) 2525;

- (c) M. Aizenberg, D. Milstein, J. Am. Chem. Soc. 117 (1995) 8674.
- [3] B.E. Smart, Mol. Struc. Energ. 3 (1986) 141.
- [4] B.L. Edelbach, W.D. Jones, J. Am. Chem. Soc. 119 (1997) 7734.
- [5] T.H. Peterson, J.T. Golden, R.G. Bergman, Organometallics 18 (1999) 2005.
- [6] M.K. Whittlesey, R.N. Perutz, M.H. Moore, Chem. Commun. (1996) 787.
- [7] L. Cronin, C.L. Higgitt, R. Karch, R.N. Perutz, Organometallics 16 (1997) 4920.
- [8] P. Hofmann, G. Unfried, Chem. Ber. 125 (1992) 659.
- [9] S.T. Belt, M. Helliwell, W.D. Jones, M.G. Partridge, R.N. Perutz, J. Am. Chem. Soc. 115 (1993) 1429.
- [10] B.M. Kraft, R.J. Lachicotte, W.D. Jones, J. Am. Chem. Soc. 123 (2001) 10973.
- [11] B.L. Edelbach, A.K.F. Rahman, R.J. Lachicotte, W.D. Jones, Organometallics 18 (1999) 3170.
- [12] See Section 4.
- [13] $Cp_2^*ZrF_2$ may be formed by reaction of Cp_2^*ZrHF with C_6F_6 , although independent reaction of Cp_2^*ZrHF with ten equivalents C_6F_6 produced $Cp_2^*ZrF_2$ and C_6F_5H very slowly, reaching only 40% conversion after 9 days at 100 °C.
- [14] B.M. Kraft, R.J. Lachicotte, W.D. Jones, Organometallics 21 (2002) 727.
- [15] To our knowledge, the preference for *ortho* over *para* C-F activation of C_6F_5H is unprecedented.
- [16] Two doublet of doublet resonances typical for $Cp_2^*Zr(Ar^F)H$ species were observed in the ¹H-NMR spectrum indicating either two geometrical isomers or two rotomers of $Cp_2^*Zr(C_{10}F_7)H$.
- [17] The disappearance of $Cp_2^*ZrH_2$ could be determined only by monitoring the appearance of Cp_2^*ZrHF in the ¹⁹F-NMR spectra. Overlap of the Cp^* resonances in the ¹H-NMR spectrum prevented direct observation.
- [18] J.E. Bercaw, Adv. Chem. Ser. 167 (1978) 136.
- [19] D.G. Bickley, N. Hao, P. Bougeard, B.G. Sayer, R.C. Burns, M.J. McGlinchey, J. Organomet. Chem. 246 (1983) 257.
- [20] P.J. Chirik, M.W. Day, J.E. Bercaw, Organometallics 18 (1999) 1873.
- [21] H. Lee, P.J. Desrosiers, I. Guzei, A.L. Rheingold, G. Parkin, J. Am. Chem. Soc. 120 (1998) 3255.
- [22] L.E. Schock, T.J. Marks, J. Am. Chem. Soc. 110 (1988) 7701.
- [23] J. Burdon, H.S. Gill, I.W. Parsons, J. Chem. Soc. Perkin Trans. I (1980) 2494.